tan(A + B - C/4) = tan(π - 2C/4) = tan(π/4 - C/2) = 1 - tan C/2/1 + tan C/2


From Eqs. (1) and (2), we get
cosA cosB cosC = (1 − sinA) (1 − sinB) (1 − sinC)
= (1 + sinA) (1 + sinB) (1 + sinC)
Hence, 1 − Σ sinA + Σ sinA sinB − sinA sinB sinC
= 1 + Σ sinA + Σ sinA sinB + sinA sinB sinC
Therefore, Σ sinA + sinA sinB sinC = 0.