Answer is (d) 2g(1)
For x ∈ (– 2, 2),
(g(x))3 – 3g(x) + x = 0 ...(i)
(g(– x))3 – 3g(–x) – x = 0 ...(ii)
Adding Eqs. (i) and (ii), we get
{(g(x))3 + (g (x))3} – 3{g(x) + g(–x)} = 0
{g(x) + g(–x)} {(g(x))2 + (g(–x))2 – g(x)g(–x)) – 3} = 0
{g(x) + g(– x)} = 0
Now, ∫g'(x) dx for x ∈ [-1,1]
= (g(x)) for x ∈ [-1,1]
= g(1) – g (–1) = g(1) + g (1) = 2g(1)