Given,
xy = e(x-y)
Taking log of both sides
\(\Rightarrow\) log xy = log e(x-y)
\(\Rightarrow\) y.log x = (x-y) log e [\(\because\) log e = 1]
\(\Rightarrow\) y.log x = (x-y) \(\Rightarrow\) y log x+y = x
\(\Rightarrow\) y = \(\frac{X}{1+logX}\)
\(\Rightarrow\) \(\frac{dy}{dX}\) = \(\frac{(1+logX).1-X.\big(0+\frac{1}{X}\big)}{(1+logX)^2}\)
\(\Rightarrow\) \(\frac{dy}{dX}\) = \(\frac{1+logX-1}{(1+logX)^2}\) = \(\frac{log.X}{(loge+logX)^2}\) [\(\because\) 1 = log e]
\(\Rightarrow\) \(\frac{dy}{dX}\) = \(\frac{logX}{(log\,eX)^2}\) \(\Rightarrow\) \(\frac{dy}{dX}\) = \(\frac{logX}{\{log\,(eX)\}^2}\)