(x2 + y2)dy/dx = 2xy
dy/dx = 2xy/(x2 + y2)
dy/dx = (x2 + y2)/2xy ...(i)
Let x = vy
Here, differentiating w.r.t. y,
dx/dy = v.(dy/dx) + y(dv/dy)
dx/dy = (v + y).(dy/dx)
Here, from eq. (i),
v + y(dv/dx) = (v2y2 + y2)/2vy2
v + y(dv/dy) = y2(v2 + 1)/y22v
v + y(dv/dy) = (v2 + 1)/2v
y(dv/dy) = ((v2 + 1)/2v) - (v/1)
y(dv/dy) = (v2 + 1 - 2v2)/2v
y(dv/dy) = (-v2 + 1)/2v
y(dv/dy) = (1 - v2)/2v
2v/(1 - v2) dv = dy/y
Integrating both sides
∫2v(v2 - 1) dv = - ∫dy/y
log|v2 - 1| = - log y + log c
log|v2 - 1|y = log c
v2y - y = c
(x2/y2) x (y - y) = c
(x2/y) - y = c
(x2 - y2)/y = c
x2 - y2 = cy