1. Maximum height, H = \(\frac{u^2sin^2 \theta}{2g}\)Here,
u = 62 ms-1 , θ = 45°, g = 9.8 ms-2

= \(\frac {62 \times 62}{4 \times 9.8}\) = 98.06 m.
2. Horizontal range. R is given by,
R = \(\frac{u^2sin2 \theta}{2g}\)
= \(\frac{ 62 \times 62 \times sin \,90}{9.8}\)
= \(\frac {62 \times 62}{4 \times 9.8}\) = 392.2m.
3. The time of flight,
T = \(\frac{2usin\theta}{g}\)
= \(\frac{ 2 \times 62 \times sin \,45}{9.8}\)
= \(\frac {2 \times 62}{\sqrt2 \times 9.8}\) = 8.95 s.
4. The horizontal component of the velocity remains constant throughout.
∴ Horizontal component of the velocity after 4 seconds vx = ucosθ Here u = 62 ms-1 and θ = 45°
∴ vx = 62 cos45° = \(\frac{ 62}{\sqrt2}\) = 44.3 s.
The vertical component of the velocity changes due to the acceleration due to gravity.
We have vy = uy + at,
Here, uy = usinθ; a = -g; t = 4 s;
From vy = usinθ - 4g
∴ vy = 62 sin45 - 9.8 × 4
\(\frac{ 62}{\sqrt2}\) -39.2 = 4.64 ms-1
Magnitude of the resultant velocity after 4 seconds is,
V = \(\sqrt {v_x^2+v_y^2}\)
\(\sqrt {(44.3)^2+(4.64)^2} \)
= 44.5 ms-1
Direction of the velocity is given by
tan a = \(\frac {v_y}{v_x}\) = \(\frac {4.64}{44.3} = 0.104 \)
∴ a = tan-1 (0.104) = 5°5'