Velocity at the highest point = ucosθ = v1
Hmax = \(\frac {u^2sin^2\theta}{2g}\)
Using v = u - 2gh
At h = \(\frac{H_{(max)}}{2},\)vertical component of v2 is given by
v2y2 = u2sin2θ - 2g x \(\frac{H_{(max)}}{2}\)
v2y2 = u2 sin2θ - g \((\frac {u^2sin2\theta}{2g})\)
⇒ v = \(\frac {u^2sin^2\theta}{2}\)
Horizontal component v2 is
v2x = v1 = ucosθ

Squaring both sides,

⇒ 7 cos2θ = 6 cos2θ + 3 sin2θ
⇒ cos2θ = 3 sin2θ
⇒ tan2θ = \(\frac {1}{3}\)
⇒ tanθ = ±\(\frac{1}{\sqrt3}\)
⇒ θ = ± 30°
θ = 30°