1. Consider the figure

N= mg cosθ …………….. (1)
f ≤ μs N (if not slipping)
= μs mg cosθ
also mg sinθ – f = ma ………(2)
f.R = 1 α = \(\frac{mR^2}{2}\) α M.1. of cylinder
⇒ f = \(\frac{ma}{2}\)
∴ a = \(\frac{2gsin \,\theta}{3}\)
∴ f = \(\frac{mg\,sin \,\theta}{3}\) \(\frac {10 \times 10 \times sin\, 30}{3}\)≈ 16.6 N
2. Since, the cylinder, is rolling, the point of its contact with plane is stationery hence the power delivered by friction is zero, hence the work done is zero.
3. Slipping occurs when
f ≥ μs mg cosθ
⇒ \(\frac{mg\,sin \theta}{3}\)≥ μs mg cosθ
⇒ tan θ ≥ μs × 3 = 0.75
⇒ θ ≥ 37°.