Total surface area of a cylinder = 462 cm2
As per given statement:
Curved or lateral surface area = \(\frac{1}{3}\) (Total surface area)
⇒ 2πrh = \(\frac{1}{3}\)(462)
⇒ 2πrh = 154
⇒ 2 x \(\frac{22}{7}\) x r x h = 154
⇒ h = \(\frac{49}{2r}\) ….(1)
Again,
Total surface area = 462 cm2
2πr(h + r) = 462
2πr(\(\frac{49}{2r}\) + r) = 462
or 49 + 2r2 = 147
or 2r2 = 98
or r = 7
Substitute the value of r in equation (1),
h = \(\frac{49}{2}\)(7)
= \(\frac{49}{14}\)
= \(\frac{7}{2}\)
Height (h) = \(\frac{7}{2}\) cm
Radius = 7 cm and height = \(\frac{7}{2}\) cm of the cylinder