Considering ∫(x2 + x - 1)/(x2 + x - 6) dx
By expressing the integral

Factorize the denominator,

⇒ 1 = (A + B) x + (3A – 2B)
⇒ Then A + B = 0 … (1)
And 3A – 2B = 1 … (2)
Solving (1) and (2),
2 × (1) → 2A + 2B = 0
1 × (2) → 3A – 2B = 1
5A = 1
∴ A = 1/5
On substituting A value in equation (1),
A + B = 0
1/5 + B = 0
B = -1/5
Hence,
