Let us consider the LHS
sin 2x/(1 + cos 2x)
As we know that cos 2x = 1 – 2 sin2 x
= 2 cos2 x – 1
Sin 2x = 2 sin x cos x
Therefore,
sin 2x/(1 + cos 2x) = [2 sin x cos x/(1 + (2cos2x – 1))]
= [2 sin x cos x/(1 + 2cos2 x – 1)]
= [2 sin x cos x/2 cos2 x]
= sin x/cos x
= tan x
= RHS
Thus proved.