Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
996 views
in Trigonometry by (52.1k points)

Prove the identity: 2(sin6 x + cos6 x) – 3(sin4 x + cos4 x) + 1 = 0

1 Answer

+1 vote
by (51.0k points)
selected by
 
Best answer

Let us consider the LHS

2(sin6 x + cos6 x) – 3(sin4 x + cos4 x) + 1

As we know, (a + b)2 = a2 + b2 + 2ab

a3 + b3 = (a + b) (a2 + b2 – ab)

Therefore,

2(sin6 x + cos6 x) – 3(sin4 x + cos4 x) + 1 = 2{(sin2 x)3 + (cos2 x)3} – 3{(sin2 x)2 + (cos2 x)2} + 1

= 2{(sin2 x + cos2 x) (sin4 x + cos4 x – sin2 x cos2 x} – 3{(sin2 x)2 + (cos2 x)2 + 2sin2 x cos2 x – 2sin2 x cos2 x} + 1

= 2{(1) (sin4 x + cos4 x + 2 sin2 x cos2 x – 3 sin2 x cos2 x} – 3{(sin2 x + cos2 x)2 – 2sin2 x cos2 x} + 1

As we know, sin2 x + cos2 x = 1

= 2{(sin2 x + cos2 x)2 – 3 sin2 x cos2 x} – 3{(1)2 – 2sin2 x cos2 x} + 1

= 2{(1)2 – 3 sin2 x cos2 x} – 3(1 – 2sin2 x cos2 x) + 1

= 2(1 – 3 sin2 x cos2 x) – 3 + 6 sin2 x cos2 x + 1

= 2 – 6 sin2 x cos2 x – 2 + 6 sin2 x cos2 x

= 0

= RHS

Thus proved.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...