We have,
((x+1)/(x-4))2 = (x+8)/(x-2)
(x+1)2 / (x-4)2 – (x+8) / (x-2) = 0
By taking LCM as (x-4)2 (x-2)
((x+1)2 (x-2) – (x+8) (x-4)2) / (x-4)2 (x-2) = 0
By cross-multiplying we get,
(x+1)2 (x-2) – (x+8) (x-4)2 = 0
Upon expansion we get,
(x2 + 2x + 1) (x-2) – ((x+8) (x2 – 8x + 16)) = 0
x3 + 2x2 + x – 2x2 – 4x – 2 – (x3 – 8x2 + 16x + 8x2 – 64x + 128) = 0
x3 + 2x2 + x – 2x2 – 4x – 2 – x3 + 8x2 – 16x – 8x2 + 64x – 128 = 0
45x – 130 = 0
x = 130/45
= 26/9
Now let us verify the given equation,
((x+1)/(x-4))2 = (x+8)/(x-2)
(x+1)2 / (x-4)2 = (x+8) / (x-2)
By substituting the value of ‘x’ we get,
(26/9 + 1)2 / (26/9 – 4)2 = (26/9 + 8) / (26/9 – 2)
((26+9)/9)2 / ((26-36)/9)2 = ((26+72)/9) / ((26-18)/9)
(35/9)2 / (-10/9)2 = (98/9) / (8/9)
(35/-10)2 = (98/8)
(7/2)2 = 49/4
49/4 = 49/4
Hence, the given equation is verified.