For continuity at x = 1

= | 1 + 0 – 3 |
= | – 2 |
= 2
Value of function f(x) at x = 1,
f(1) = | 1 – 3 |
= | -2 |
= 2
∴ f (1 – 0) = f(1 + 0) = f (1) = 2
So, f(x) is continue at f (x), x = 1
For continuity at x = 3
Left hand limit
f (3 – 0) = limh→0 f (3 – h)
= limh→0 – {(3-A)-3}
= limh→0 (3 – 3 + h)
= 0
Right hand limit
f(3 + 0) = limh→0 f(3 + h)
= limh→0 (3 + h – 3)
= 0
f(3) = 3 – 3 = 0
∴ f (3 – 0) = f(3 + 0)
= f(0) = o
Hence, function is continue at x = 3.