Let x1, x2 ∈ [0,∞] is such that
x1 < x2
∴ x1 < x2 ⇒ x12< x1x2 …..(i)
and x1 < x2 ⇒ x1x2 < x22……(i)
From (i) and (ii),
x1 < x2 ⇒ x12 < X22
⇒ f(x1) < f(x2)
∴ X1 < X2 ⇒ f(x1) < f(x2)
where x1, x2 ∈ [0, ∞]
Hence, f(x) is continuously increasing in [0, ∞)
Again, let x1, x2 ∈ (-∞, 0) is such that
x1 < x2
Then
x1 < x2 ⇒ x12> x1x2
∵ – 3 < – 2, (- 3) (- 3) = 9
(- 3) × (- 2) = 6
∴ 9 > 6
x12 > x1 x2
Again
x1 < x2 ⇒ x1x2 > x22
Again – 3 < – 2
(- 3) × (- 2) = 6
(- 2) × (- 2) = 4
6 > 4
∴ x1x2 > x22
From (i) and (ii),
x1 < x2 ⇒ X12 > x22
⇒ f(x1) > f(x2)
∴ x1 < x2 ⇒ f(x1) > f(x2)
Hence, f(x) is continuously decreasing in (-∞, 0).