1)

2)
(1+x2)dy=(1+y2)dx(1+x2)dy=(1+y2)dx
dy1+y2=dx1+x2dy1+y2=dx1+x2
∫dy1+y2=∫dx1+x2∫dy1+y2=∫dx1+x2
tan−1y=tan−1x+C1tan−1y=tan−1x+C1
tan−1y−tan−1x=C1tan−1y−tan−1x=C1
tan−1(y−x1+xy)=C1tan−1(y−x1+xy)=C1
y−x1+xy=tanC1y−x1+xy=tanC1
y−x1+xy=C2y−x1+xy=C2
y−x=C2(1+xy)y−x=C2(1+xy)
x−y+C(1+xy)=0