Set X = set of subsets A relation R in X is defined as
ARB ⇔ A is disjoint to B ∀ A, B ∈ X
⇔ A ∩ B = Φ ∀ A, B ∈ X (where Φ is a null set)
(i) Reflexivity:
Let A ∈ X
A ∈ X ⇒ A ∩ A = A
⇒ A ∩ A ≠ Φ (until A becomes Φ)
⇒ A is not disjoint to A
⇒ (A, A) ∉ R ∀ A ∈ X
R is not reflexive relation.
(ii) Symmetricity:
Let A, B ∈ X in this way
(A, B) ∈ R
(A, B) ∈ R
⇒ A is disjoint to B thus A ∩ B = Φ
⇒ B ∩ A thus, B is disjoint to A (By commutative)
⇒ (B, A) ∈ R
So, (A, B) ∈ R
⇒ (B, A) ∈ R ∀ A, B ∈ X
R is a symmetric relation.
(iii) Transitivity:
Let A, B, C ∈ X is in this way
(A, B) ∈ R and (B, C) ∈ R
A, B ∈ R ⇒ A ∩ B = Φ
B, C ∈ R ⇒ B ∩ C = Φ
Then A ∩ C = Φ is not necessary.
For example:
A = {1, 2, 3}, B = {4, 5, 6}, C = {1, 2, 7}
Here A, B ∈ R because A ∩ B = Φ
B, C ∈R because B ∩ C ⇒ Φ
But (A, C) ∉ R because A ∩ C = {1, 2} ≠ Φ
R is not transitive relation.
From (i), (ii) and (iii) given relation R is symmetric but relative R is not reflexive and transitive.
Hence Proved.