(1 + x)n= nC0 1n + nC1 1n + nC1 1n-1 x1
nC2 1n-2 x2 + nC3 1n-3x3 +….
Putting x = 1
(1 + 1)n = nC0 + nC1 +nC2 + nC3 + ….
Putting x = – 1
(1 – 1)n = nC0 – nC1 +nC2 – nC3 + ….
Here nC0 + nC1 +nC2 + nC3 + …. = 2n … (i)
“C0 – “Ci + ”C2 – “C3 + … = 0 … (ii)
Adding equation (i) and (ii)
2[nC0 + nC2 + nC4 + …] = 2n
⇒ nC0 + nC2 + nC4 + … = 2n – 1
or C0 + C2 + C4 + … = 2n – 1