Given expression
= (1 + 2x)6 (1 – x)7
∵ (1 + 2x)6 = 6C0 + 6C1 (2x)1 + 6C2 (2x)2
+ 6C3 (2x)3 + 6C4 (2x)4+ 6C5 (2x)5 + 6C6 (2x)6
= 1 + 6 × 2x + 15 × 4x2 + 20 × 8x3
+ 15 × 16x4+ 6 × 32 x 5+ 1 × 64x6
or (1 + 2x)6 = 1 + 12x + 60x2 + 160x3
+ 240x4+ 192x5 + 64x6 … (i)
[∵ 6C0 = 1, 6C1 = 6, 6C2 = 15, 6C3 = 20, 6C4 = 15, 6C5 = 6]
and (1 – x)7 = 7C0 – 7C1x + 7C2x2– 7C3x3 + 7C4x4 – 7C5x6 +,..
= 1 – 7x + 21x2 – 35x3 + 35x4 - 21x5 +….. (ii)
[7C0 = 1, 7C1= 7, 7C2 = 21, 7C3 = 35, 7C4= 35, 7C5 = 21]
Now (1 + 2x)6 (1 – x)7
= [1 + 12x + 60x2 + 160x3+ 240x4 + 192x4+ …]
= [1 – 7x + 21x2 – 35x3 + 35x4 – 21x5 + …]
Coefficient of x5 in the above expansion
[- 21 + 12 x 35 – 60 × 35 + 160 × 21+ 240 (-7) + 192 × 1]
= [- 21 + 420 – 2100 + 3360 – 1680 + 192]
= [-3801 + 3972] = 171.