Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
639 views
in Binomial Theorem by (46.3k points)

In the product of expansion of (1 + 2x)6 (1 – x)7, find the coefficient of x5.

1 Answer

+1 vote
by (48.0k points)
selected by
 
Best answer

Given expression

= (1 + 2x)6 (1 – x)7

∵ (1 + 2x)6C0 + 6C1 (2x)1 + 6C2 (2x)2
6C3 (2x)3 + 6C4 (2x)46C5 (2x)5 + 6C6 (2x)6

= 1 + 6 × 2x + 15 × 4x2 + 20 × 8x3
+ 15 × 16x4+ 6 × 32 x 5+ 1 × 64x6

or (1 + 2x)6 = 1 + 12x + 60x2 + 160x3
+ 240x4+ 192x5 + 64x6 … (i)

[∵ 6C0 = 1, 6C1 = 6, 6C2 = 15, 6C3 = 20, 6C4 = 15, 6C5 = 6]

and (1 – x)7 = 7C0 – 7C1x + 7C2x2– 7C3x3 + 7C4x4 – 7C5x6 +,..

= 1 – 7x + 21x2 – 35x+ 35x- 21x5 +….. (ii)

[7C0 = 1, 7C1= 7, 7C2 = 21, 7C3 = 35, 7C4= 35, 7C5 = 21]
Now (1 + 2x)6 (1 – x)7

= [1 + 12x + 60x2 + 160x3+ 240x4 + 192x4+ …]

= [1 – 7x + 21x2 – 35x3 + 35x4 – 21x5 + …]

Coefficient of x5 in the above expansion

[- 21 + 12 x 35 – 60 × 35 + 160 × 21+ 240 (-7) + 192 × 1]

= [- 21 + 420 – 2100 + 3360 – 1680 + 192]

= [-3801 + 3972] = 171.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...