(i) 3n + 7
nth term, Tn = 3n + 7
First term T1 = 3 × 1 + 7 = 3 + 7=10
Second term T2 = 3 × 2 + 7 = 6 + 7=13
Common difference
d = T2 – T1
= 13-10 = 3
Fifth term T5 = 3 × 5 + 7 = 15 + 7 = 22
Hence, a = 10, d = 3 and T5 = 22
(ii) a+ (n – 1)d
nth term Tn – a + (n – 1)d
First term T1 = a + (1 – 1)d
= a + 0 × d = a + 0 = a
Second term T2 – a + (2 – 1)d = a + d
T2 = 5 – 3 × 2 = 5 – 6 = -1
Common difference
d = T2 – T1= a + d – a = d
Fifth term T5 = a + (5 – 1)d = a + 4d
Hence, ‘a’ = a,’d’ = d and T5 = a + 4d
(iii) 5 – 3n
nth term Tn =5 – 3n
First term, T1 = 5 – 3 × 1 =5 – 3 = 2
Second term T2 = 5-3 × 2 = 5- 6 = -1
Common difference
d = T2 – T1 = (- 1) -2 = -3
Fifth term T5= 5 – 3 × 5 = 5 – 15 = – 10
Hence, a = 2, d = -3 and T5 = – 10