Given : In ∆ABC ∠B = 90° and BD ⊥ AC
To prove : ∆ADB ~ ∆BDC

In ∆ABC
∠A + ∠C = 90° [∵ ∠B = 90°] …..(i)
In ∆BDC
∠DBC + ∠C = 90° [∵ ∠BDC = 90°] ……(ii)
From equation (i) and (ii)
∠A + ∠C = ∠DBC + ∠C
⇒ ∠A = ∠DBC …(iii)
Now, In ∆ADB and ∆BDC
∠ADB = ∠BDC = 90° (given)
∠DAB = ∠DBC (by eqn(iii))
By A-A Similarly criterion
∆ADB ~ ∆BDC