Here AD is median.
Therefore ar (∆ABD) = ar (∆ACD) …(i)
Reason:
(Median divides the triangle in two parts equal in areas)
Again PD is a median of ∆BPC
ar (∆BPD) = ar (∆CPD) …(ii)
Subtracting (ii) from (i), we get
ar (∆ABD) – ar (∆BPD) = ar (∆ACD) – ar (∆CPD)
⇒ ar (∆ABP) = ar (∆ACP)