(ABCD) = ar (ABFC) …(i)
ar (∆ABF) = ar (∆AFC)
ar ∆AFC = \(\frac { 1 }{ 2 }\) ar (∆BCD) …(ii)
Also ar (∆ADC) = \(\frac { 1 }{ 2 }\) ar (∆BCD) …(iii)
⇒ ar (∆AFC) = ar (∆ADC) …(iv)
⇒ ar (∆ADF) = ar (∆ADC) + ar (∆ACF) = \(\frac { 1 }{ 2 }\) ar
(∆BCD) + \(\frac { 1 }{ 2 }\) ar (∆BFC) [using (ii) and (iii)]
= \(\frac { 1 }{ 2 }\) ar (∆BFC) + \(\frac { 1 }{ 2 }\) ar (∆BFC)
= ar (∆BFC)
⇒ ar (∆ADF) = ar (∆BFC)
Hence proved.