Suppose the sides containing right angle be x and (x – 14) cm
Area of right angled triangle
= \(\frac { 1 }{ 2 }\) x base x altitude
= \(\frac { 1 }{ 2 }\) × x (x – 14) cm2
area = 120 cm2
⇒ 120 = \(\frac { 1 }{ 2 }\) x (x2 – 14x)
⇒ x2 – 14x – 240 = 0
⇒ x2 – 24x + 10x – 240 = 0
⇒ x(x – 24) + 10(x – 24) = 0
⇒ (x – 24)(x + 10) = 0
either x – 24 = 0
⇒ x = 24
or x + 10 = 0
⇒ x = -10 (neglecting)
x = 24 cm (one side)
and another side = (x – 24)
= (24 – 14) = 10 cm
Hypotenuse = √(242 + 102)
= √(576 + 100)
= √676 = 26 cm
Perimeter of the triangle
= 24 + 10 + 26 = 60 cm