i. QS = SR = 1/2 QR (i) [S is the midpoint of side QR]

∴ In ∆PSR, ∠PSR is an obtuse angle [Given]
and PT ⊥ SR [Given, Q-S-R]
∴ PR2 = SR2 +PS2 + 2 SR × ST (ii) [Application of Pythagoras theorem]
∴ PR2 = ( 1/2QR)2 + PS2 + 2 ( 1/2 QR) × ST [From (i) and (ii)]
∴ PR2 = (QR/2 )2 + PS2 + QR × ST
∴ PR2 = PS2 + QR × ST + (QR/2)2
ii. In.∆PQS, ∠PSQ is an acute angle and [Given]

PT ⊥QS [Given, Q-S-R]
∴ PQ2 = QS2 + PS2 – 2 QS × ST (iii) [Application of Pythagoras theorem]
∴ PR2 = ( 1/2 QR)2 + PS2 – 2 ( 1/2QR) × ST [From (i) and (iii)]
∴ PR2 = (QR/2)2 + PS2 – QR × ST
∴ PR2 = PS2 – QR × ST + (QR/2)2