i. (x + y)3 – (x – y)3
Here, a = x + y and b = x – y
(x + y)3 – (x – y)3 = [(x + y) – (x – y)] [(x + y)2 + (x + y) (x – y) + (x – y)] …[a3 – b3 = (a – b)(a2 + ab + b2)]
= (x + y – x + y) [(x2 + 2xy + y2) + (x2 – y2) + (x2 – 2xy + y2)]
= 2y(x2 + x2 + x2 + 2xy – 2xy + y2 – y2 + y2)
= 2y(3x2 + y2) = 6x2y + 2y3
ii. (3a + 5b)3 – (3a – 5b)3
Here, A = 3a + 5b and B = 3a – 5b
= [(3a + 5b) – (3a – 5b)] [(3a + 5b)2 + (3a + 5b) (3a – 5b) + (3a – 5b)2] …[∵ A3 – B3 = (A – B)(A2 + AB + B2)]
= (3a + 5b – 3a + 5b) [(9a2 + 30ab + 25b2) + (9a2 – 25b2) + (9a2 – 30ab + 25b2)]
= 10b(9a2 + 9a2 + 9a2 + 30ab – 30ab + 25b2 – 25b2 + 25b2)
= 10b(27a2 + 25b2)
= 270a2b + 250b3
iii. (a + b)3 – a3 – b3
= a3 + 3a2b + 3ab2 + b3 – a3 – b3
= 3a2b + 3ab2
iv. p3 – (p + 1)3
= p3 – (p3 + 3p2 + 3p + 1) …[∵ (a + b)3 = a3 + 3a2b + 3ab2 + b3]
= p3 – p3 – 3p2 – 3p – 1
= – 3p2 – 3p – 1
v. (3xy – 2ab)3 – (3xy + 2ab)3
Here, A = 3xy – 2ab and B = 3xy + 2ab
∴ (3xy – 2ab)3 – (3xy + 2ab)3
= [(3xy – 2ab) – (3xy + 2ab)] [(3xy – 2ab)2 + (3xy – 2ab) (3xy + 2ab) + (3xy + 2ab)2] …[∵ A3 – B3 = (A – B) (A2 + AB + B2)]
= (3xy – 2ab – 3xy – 2ab) [(9x2y2 – 12xyab + 4a2b2) + (9x2y2 – 4a2b2) + (9x2y2 + 12xyab + 4a2b2)]
= (- 4ab) (9x2y2 + 9x2y2 + 9x2y2 – 12xyab + 12xyab + 4a2b2 – 4a2b2 + 4a2b2)
= (- 4ab) (27 xy2 + 4a2b2)
= -108x2y2ab – 16a3b3