(i) s = f(t) = 2t3 – 9t2 + 12t – 4
V = f'(t) = 6t2 – 18t + 12
V = 0 ⇒ 6(t2 - 3t – 2) = 0
(t – 1)(t – 2) = 0
t = 1, 2
When t < 1, (say t = 0.5)
V = 6(0.25 – 1.5 + 2) = +ve
When 1 < t < 2, (say t = 1.5)
V = 6(2.25 – 4.5 + 2) = - ve
When t > 2, (say t = 3)
V = 6(9 – 6 + 2) = +ve
So the particle changes its direction when t lies between 1 and 2 secs.
(ii) The distance travelled in the first 4 seconds is
|s(0) – s(1)| + |s(1) – s(2)| + |s(2) – s(3)| + |s(3) – s(4)|
Here, s(t) = 2t3 – 9t2 + 12t – 4
s(0) = -4
s(1) = 1
s(2) = 0
s(3) = 5 and
s(4) = 28
∴ Distance travelled in first 4 seconds
= |-4 – 1| + |1 – 0| + |0 – 5| + |5 – 28|
= 5 + 1 + 5 + 23 = 34 m
(iii)

a(at V = 0) is ‘a’ at t = 1 and 2
Now a(at t = 1) = 12 – 18 = -6m/sec2
a(at t = 2) = 24 – 18 = 6m/sec2