Let f(x) = x2 – 1 for 1 ≤ x ≤ 2
We divide the interval [1, 2] into n equal sub-intervals each of length h
We have a = 1, b = 2

Here, f(a) = f(1) = (1)2 – 1 = 0
f(a + h) = f(1 + h) = (1 + h)2 – 1 = 1 + h2 + 2h – 1 = h2 + 2h
f(a + 2h) = f(1 + 2h) = (1 + 2h)2 – 1 = 1 + 4h2 + 4h – 1 = 4h2 + 4h
f[a + (n - 1)h] = f[1 + (n – 1)h] = [1 + (n – 1)h]2 – 1 = 1 + (n – 1)2 h2 + 2(n – 1 )h – 1 = (n – 1)2 h2 + 2 (n – 1 )h
