Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
3.6k views
in Surface Areas And Volumes by (49.0k points)
closed by

Find the area of the segment of a circle of radius 12 cm whose corresponding sector has a central angle of 60° (Use π = 3.14).

1 Answer

+1 vote
by (47.4k points)
selected by
 
Best answer

According to the question,

Radius of the circle = r = 12 cm

∴ OA = OB = 12 cm

∠ AOB = 60° (given)

Since triangle OAB is an isosceles triangle, ∴ ∠ OAB = ∠ OBA = θ (say)

Also, Sum of interior angles of a triangle is 180°,

∴ θ + θ + 60° = 180°

⇒2θ = 120° ⇒ θ = 60°

Thus, the triangle AOB is an equilateral triangle.

∴ AB = OA = OB = 12 cm

Area of the triangle AOB = (√3 /4)× a2,where a is the side of the triangle.

= (√3 /4) × (12)2

= (√3 /4) × 144

= 36√3 cm2

= 62.354 cm2

Now, Central angle of the sector AOBCA = ∅ = 60° =  (60π / 180) = (π/3) radians

Thus, area of the sector AOBCA = ½ r2 ∅

= ½ × 122 × π/3

= 122 × (22 / (7×6))

= 75.36 cm2

Now, Area of the segment ABCA = Area of the sector AOBCA – Area of the triangle AOB

= (75.36 – 62.354) cm2 = 13.006 cm2

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...