True
Explanation:
Given |z – 1| = |z – i|
Putting z = x + iy,
⇒ |x – 1 + iy| = |x – i (1 – y) |
⇒ (x – 1)2 + y2 = x2 + (1 – y)2
⇒ x2 - 2x + 1 + y2 = x2 + 1 + y2 – 2y
⇒ -2x + 1 = 1 – 2y
⇒ -2x + 2y = 0
⇒ x – y = 0
Now, equation of a line through the points (1, 0) and (0, 1) is

⇒ x + y = 1
This line is perpendicular to the line x – y = 0.