At a given temperature and pressure, the equilibrium constant values for the equilibria
3A2 + B2 + 2C \(\overset{K_1}{⇌}\) 2A3BC and A3BC \(\overset{K_2}{⇌}\) 3/2 [A2] + 1/2 [B2] + C
The relation between K1 and K2 is
\((a)\,\,\,K_1=\frac{1}{\sqrt K_2}\)
\((b)\,\,\,K_2=K_1^{-1/2}\)
\((C)\,\,K_1^{2}=2K_2\)
\((d)\,\,\, \frac{K_1}{2}=K_2\)