
Given: OP = OQ = 4
O’P = O’Q = 3
OO’ is the perpendicular bisector of chord PQ.
Let R be the point of intersection of PQ and OO’.
Assume PR = QR = x and OR = y
In OPO’, OP2 + O’P2 = (OO’)2 ⇒ OO’
= \(\sqrt{4^2+3^2}\) = 5
OR = y ⇒ OR = 5 – y
In ΔOPR, PR2 + OR2 = OP2 ⇒ x2 + y = 42 … (1)
In ΔO’PR, PR2 + O’R2 = O’P2 ⇒ x2 + (5 – y)2 = 9 … (2)
(1) – (2) => y2 – (25 + y2 – 10y) = 16 – 9
⇒ y2 – 25 – y2 + 10y = 7 .
⇒ 10y = 25 + 7 ⇒ 10y =32
⇒ y = 3.2
Substituting y = 3.2 in (1), we get x = \(\sqrt{4^2+3.2^2}\)
x = 2.4
PQ = 2x ⇒ PQ = 4.8 cm