Whole surface area of the pyramid
= Lateral surface area + Area of the square base + (Side)2
= 4 × Area of triangular faces
Each side of the square (a) = \(\frac{diagonal}{\sqrt{2}}\) = \(\frac{10}{\sqrt{2}}\) cm, Height (h) = 10 cm.

EG = height of a triangular face
AB = base of the triangular face
∴ Height of the triangle = \(\sqrt{(10)^2 +\big(\frac{1}{2}\times \frac{10}{\sqrt{2}}\big)^2}\)
= \(\sqrt{100+\frac{25}{2}}\) = \(\sqrt{112.5}\) = 10.6 cm (approx)
∴ Whole surface area = \(4\times \frac{1}{2}\times AB \times EG +(AB)^2\)
= \(4\times \frac{1}{2}\times \frac{10}{\sqrt{2}} \times 10.6 +\big(\frac{10}{\sqrt{2}}\big)^2\)
= 149.91 cm2 + 50 cm2 = 200 cm2 (approx).