Answer : (c) = \(\frac{8000}{9} \pi \,\,{cm}^3\)
The cylinder inside the cone is shown in Fig. (a).

Here, AQ = 20 cm, PG = QE = \(\frac{1}{2}\)DE = \(5\sqrt{3}\) cm and ∠CAB = 60º.
The cross-section as a plane figure is shown in Fig. (b).

\(\frac{PG}{AP} =\) tan 300 ⇒ \(\frac{5\sqrt{3}}{AP} = \frac{1}{\sqrt{3}}\)
⇒ AP = 15 cm.
Let QB = r be the radius of the cone.
Then, in similar triangles APG and AQB,
\(\frac{AP}{PG} = \frac{AQ}{QB} \) ⇒ QB = \(\frac{AQ.PG}{AP}\)
= \(\frac{20 \times 5\sqrt{3}}{15}\)
= \(\frac{20}{\sqrt{3}}\) cm.
∴ Radius of cone = \(\frac{20}{\sqrt{3}}\) cm , Height of cone = 20 cm.
∴ The volume of cone = \(\frac{1}{3} \pi r^2h\)
= \(\frac{1}{3}\times \pi \times \big(\frac{20}{\sqrt{3}}\big)^2\times 20\)
= \(\frac{8000}{9} \pi \,\,{cm}^3\)