Given that A(0, 0) and B(3,√3) are two vertices of an equilateral triangle.

Let us assume C(x, y) be the third vertex of the triangle.
We have AB = BC = CA
We know that the distance between the two points (x1, y1) and (x2, y2) is

Now,
⇒ BC = CA
⇒ BC2 = CA2
⇒ (3 - x)2 + (√3 - y)2 = (x - 0)2 + (y - 0)2
⇒ x2 - 6x + 9 + 3 + y2 - 2√3y = x2 + y2
⇒ 6x = 12 - 2√3y

⇒ AB = BC
⇒ AB2 = BC2
⇒ (0 - 3)2 + (0 - √3)2 = (3 - x)2 + (√3 - y)2
⇒ 9 + 3 = 9 - 6x + x2 + 3 - 2√3y + y2
From (1)

⇒ 48y2 - 48√3y - 288 = 0
⇒ y2–√3y –6 = 0
⇒ y2 - 2√3y + √3y - 6 = 0
⇒ y(y - 2√3) + √3(y - 2√3) = 0
⇒ (y + √3)(y - 2√3) = 0
⇒ y + √3 = 0 (or) y - 2√3 = 0
⇒ y = - √3 (or) y = 2√3
From (1), for y = √3

∴ The third vertex of equilateral triangle is (0, 2√3) and (3, √3).