Answer: (b) = \(\frac{π}{3}\)
tan θ + sec θ = √3
⇒ \(\frac{sin\,\theta}{cos\,\theta}\) + \(\frac{1}{cos\,\theta}\) = √3
⇒ sin θ + 1 = √3 cos θ
⇒ \(\frac{\sqrt{3}}{2}\) cos θ – \(\frac{1}{2}\) sin θ = \(\frac{1}{2}\)
⇒ cos (θ + \(\frac{π}{6}\)) = cos\(\frac{π}{3}\)
⇒ Principal value of θ + \(\frac{π}{6}\) = \(\frac{π}{3}\).