Let p(x) = 2x3 – x2 – 12x – 9
Sum of the co-efficients = 2 – 1 – 12 – 9 = -20 ≠ 0
Hence x – 1 is not a factor
Sum of co-efficients of even powers with constant = -1 – 9 = -10
Sum of co-efficients of odd powers = 2 – 12 = -10
Hence x + 1 is a factor of x.
Now we use synthetic division to find the other factors.

Then p(x) = (x + 1)(2x2 – 3x – 9)
Now 2x2 – 3x – 9 = 2x2 – 6x + 3x – 9 = 2x(x – 3) + 3(x – 3)
= (x – 3)(2x + 3)
Hence 2x3 – x2 – 12x – 9 = (x + 1) (x – 3) (2x + 3)