Let d be the common difference for the A.P.; a1, a2, a3, ....
Then, \(\frac{S_p}{S_q}\) = \(\frac{p/2[2a_1 + (p-1) d ]}{q/2 [ 2a_1 + (q - 1) d]}\) = \(\frac{p^2}{q^2}\)
⇒ \(\frac{2a_1 + (p-1) d }{ 2a_1 + (q - 1) d}\) = \(\frac{p}{q}\)
⇒ q [2a1 + (p – 1) d] = p [2a1 + (q –1) d]
⇒ 2a1q +pqd - qd = 2a1p + pqd - pd
⇒ pd – qd = 2a1p – 2a1q
⇒ d (p – q) = 2a1 (p – q)
⇒ d = 2a1
Now
