(i) h3 + k3
Comparing h3 + k3 with a3 + b3 = (a + b)(a2 – ab + b2) we have a = h, b = k
∴ h3 + k3 = (h + k)(h2 – hk + k2)
(ii) 2a2 + 16
(2 × a3) + (2 × 8) = 2(a3 + 8) = 2 (a3 + 23)
∴ 2a3 + 16 = 2 (a3 + 23)
Comparing with a3 + b3 we have a = a and b = 2
a3 + b3 = (a + b)(a2 – ab + b2)
2(a3 + 23) = 2[(a + 2) (a2 – (a) (2) + 22)] = 2[(a + 2) (a2 – 2a + 4)]
2a3 +16 = 2 (a + 2) (a2 – 2a + 4)
(iii) x3 y3 + 27
= (xy)3 + 33
Comparing with a3 + b3 we have a = xy ;b = 3
a3 + b3 = (a + b) (a2 – ab + b2)
(xy)3 + 33 = (xy + 3) ((xy)2 – (xy) (3) + 32) = (xy + 3) (x2y2 – 3xy + 9)
∴ x3y3 + 27 = (xy + 3)(x2y2 – 3xy + 9)
(iv) 64m3 + n3
= (43m3) + n3
= (4m)3 + n3
Comparing this with a3 + b3 we have a = 4m; b = n
a3 + b3 = (a + b) (a2 – ab + b2)
(4m)3 + n3 = (4m + n) [(4m)2 – (4m) (n) + n2]
= (4m + n) [42m2 – 4mn + n2]
= (4m + n) [ 16m2 – 4mn + n2]
64m3 + n3 = (4m + n) (16m2 – 4mn + n2)
(v) r3 + 27p3r
= r (r3 + 27p3) = r [r3 + 33p3]
Comparing r3 + (3p)3 with a3 + b3 we have a = r; b = 3p
a3 + b3 = (a + b)(a2 – ab + b2)
r[r3 + (3p)3] = r[(r + 3p)(r2 – r(3p) + (3p)2)]
= r[(r+ 3p) (r2 – 3rp + 32p2]
= r(r + 3p) (r2 – 3rp + 9p2)
r4 + 27p3r = r(r + 3p) (r2 – 3rp + 9p2)