y = \((x+\sqrt{1+x^2})^m\)

y1 = \(\frac{my}{\sqrt{1+x^2}}\)
Squaring both sides we get,
y12 = \(\frac{m^2y^2}{{1+x^2}}\)
(1 + x2) (y12) = m2 y2
Differentiating with respect to x, we get
(1 + x2).2(y1) (y2) + (y1)2 (2x) = 2m2 yy1
Dividing both sides by 2y1 we get,
(1 + x2) y2 + xy1 = m2 y
⇒ (1 + x2) y2 + xy1 – m2 y = 0