
Each interior angle of a regular pentagon = \(\frac{(5-2)\times180°}{5}\) = 108°
∴ Ext. ∠BAK = Ext.∠ABK= 180° – 108° = 72°
∴ In ΔABK, \(x\) = 180° – (72° + 72°)
= 180° – 144° = 36°
Similarly, we can show u = t = y = z = 36°
∴ ∠\(x\) + ∠y + ∠z + ∠t +∠u = 36° × 5 = 180°.