Given that 3x1 + 3x2 ≤ 36
Let 3x1 + 3x2 = 36
Also given that 5x1 + 2x2 ≤ 50
Let 5x1 + 2x2 = 50
x1 + x2 = 12 ... (1)
5x1 + 2x2 = 50 … (2)
(1) x 2 ⇒ 2x1 + 2x2 = 24 … (3)
(2) – (3) ⇒ 3x1 = 26
x1 = \(\frac{26}{3}\) = 8.66
put x1 = \(\frac{26}{3}\) substitute in (1)
x1 + x2 = 12
x2 = 12 – x1
x2 = 26 – \(\frac{26}{3}\) = \(\frac{10}{3}\) = 3.33
Also given that 2x1 + 6x2 ≤ 60
Let 2x1 + 6x2 = 60
x1 + 3x2 = 30
x1 + x2 = 12 … (1)
x1 + 3x2 = 30 … (2)
(1) – (2) ⇒ -2x2 = -18
x2 = 9
x2 = 9 substitute in (1) ⇒ x1 = 3

The feasible region satisfying all the given conditions is OABCD.
The co-ordinates of the comer points are O(0, 0), A(10, 0), B(\(\frac{26}{3},\frac{10}{3}\)), and C = (3, 9) and D (0, 10)

The maximum value of Z occurs at C(3, 9)
∴ The optimal solution is x1 = 3, x2 = 9 and Zmax = 330