
Given, radius of sphere (R) = 2 cm. Height of cone (h) = 3 cm.
Point O is the centre of the sphere.
∴ OA = OB = R, AC = h
⇒ OC = AC – OA = h – R
Hence, in rt. ΔORC, r2 = R2 – (h – R)2, where r is the radius of the cone
= 22 – (3 – 2)2 = 4 – 1 = 3
r = \(\sqrt3.\)
∴ \(\frac{\text{Volume of cone}}{\text{Volume of sphere}} = \) \(\frac{\frac13πr^2h}{\frac43πR^3}\) = \(\frac{(\sqrt3)^2\times3}{4\times2^3} = 9 : 32.\)