\(x\)2 + 6\(x\) – 27 > 0 ⇒ (\(x\) + 9) (x – 3) > 0 ⇒ \(x\) = –9, 3
By the method of intervals we see that (\(x\) + 9) (\(x\) – 3) is positive when \(x\) < – 9 and \(x\) > 3

\(x\)2 + 6\(x\) – 27 > 0 ⇒ x∈ (–∞, –9) ∪ (3, ∞) …(i)
Now –\(x\)2 + 3\(x\) + 4 > 0 ⇒ \(x\)2 – 3\(x\) – 4 < 0 ⇒ (\(x\) – 4) (\(x\) + 1) < 0

∴ (\(x\) – 4) (\(x\) + 1) = 0 ⇒ \(x\) = – 1, 4
∴ The expression (\(x\) – 4) (\(x\) + 1) is negative when x lies between –1 and 4.
∴ \(x\)∈ (–1, 4) …(ii)
∴ (i) and (ii) ⇒ \(x\) ∈ (3, 4).