(c) a2 = b(a+c)

In Δs ABC and DAC
∠ABC = ∠DAC
(∵ AD bisects ∠A and ∠A = 2∠B)
Also, ∠ACB = ∠DCA
⇒ DABC ~ DAC (AA similarity)
\(\frac{AC}{DC}=\frac{BC}{AC}\) ⇒ AC2 = BC.DC
⇒ DC = \(\frac{AC^2}{BC} = \frac{b^2}{a}\) .....(i)
(In a ΔABC, AB = c, BC = a, AC = b)
Also, AD being the angle bisector of ∠A,
\(\frac{BD}{CD}=\frac{AB}{AC}\) = \(\frac{c}{b}\)
∴ \(\frac{BD}{CD}+1\) = \(\frac{c}{b}\) + 1
⇒ \(\frac{BD + CD}{CD}=\frac{c+b}{b}\)
⇒ \(\frac{BC}{CD} =\frac{C+b}{b}\) ⇒ \(\frac{a}{CD}\) = \(\frac{c+b}{b}\) ⇒ CD = \(\frac{ab}{b+c}\) ......(ii)
∴ From (i) and (ii), \(\frac{b^2}{a}\) = \(\frac{ab}{b+c}\) ⇒ a2 = b(a+c).