(a) \(\frac{2}{3}\)
The equation x2 + px + \(\frac{p}{4}+\frac{1}{2}\) = 0 has real roots if the discriminant D ≥ 0.
⇒ p2 – 4 \(\bigg(\frac{p}{4}+\frac{1}{2}\bigg)\)≥ 0 ⇒ p2 - p - 2 ≥ 0
⇒ p2 – 2p + p – 2 ≥ 0 ⇒ p(p – 2) + 1 (p – 2) ≥ 0
⇒ (p – 2) (p + 1) ≥ 0
⇒ (p – 2) ≥ 0 and (p + 1) ≥ 0
⇒ p ≥ 2 or p ≤ –1
The condition p ≤ –1 is not admissible as 0 ≤ p ≤ 5.
Now p ≥ 2 ⇒ p can take up the value 2 or 3 or 4 or 5 from the given values. {0, 1, 2, 3, 4, 5}
∴ Probability (Roots of given equation are real)
= \(\frac{\text{Number of values p can take}}{\text{Given number of values}}\) = \(\frac{4}{6}=\frac{2}{3}.\)