Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
5.8k views
in Derivatives by (33.5k points)
closed by

Find the derivative of x cos x from first principle.

1 Answer

+1 vote
by (36.3k points)
selected by
 
Best answer

Let 

f(x) = x cos x

∴ \(f'(x)=\lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\) 

\(=\lim\limits_{h \to 0}\frac{(x+h)cos(x+h)-xcosx}{h}\)

\(=\lim\limits_{h \to 0}\frac{(x+h)[cos\,x\,cosh\,h-sinx.sinh]-xcosx}{h}\)

\(=\lim\limits_{h \to 0}\frac{xcosh.cosx-x\,sinx.sinh+h\,cosx.cosh-h\,sinx.sinh-x\,cosx}{h}\)

\(=\lim\limits_{h \to 0}\frac{xcos\,x.(cos\,h-1)+h[cos\,x.cos\,h-sin\,x.sin\,h-x\,sin\,x.sin\,h}{h}\)

\(=\lim\limits_{h \to 0}\frac{xcos\,x(cos\,h-1)}{h}+\)\(\lim\limits_{h \to 0}(-xsin\,x)(\frac{sin\,h}{h})+\) \(\lim\limits_{h \to 0}cos(x+h)\)

\(=​​-x\,cos\,x\lim\limits_{h \to 0}\frac{1-cos\,h}{h}-xsinx\lim\limits_{h \to 0}(\frac{sin\,h}{h})\) +\(+\lim\limits_{h \to 0}cos(x+h)\)   

\(= -x\,cos\,x.\lim\limits_{h \to 0}\frac{2sin^2\frac{h}{2}}{h\times\frac{h}{4}}\times\frac{h}{4}\)\(-xsinx.1+cosx\) 

\(=-x\,cos\,x.\frac{2}{4}.\lim\limits_{h \to 0}\) \((\frac{sin\frac{h}{2}}{\frac{h}{2}})^2\) \(h-x\,sin\,x+cos\,x\)

\(=-x\,cos\,x.\frac{1}{2}.1.0-xsinx+cosx\) 

\(cos\,x - x\,sin\,x\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...