Given,
\(y=1+x+x^2+...+x^{50}.\)
∴ \(\frac{dy}{dx}=\frac{d}{dx}[1+x+x^2+...+x^{50}]\)
\(=\frac{d}{dx}1+\frac{d}{dx}x+\frac{d}{dx}x^2+...+\frac{d}{dx}x^{50}\)
⇒ \(\frac{dy}{dx}\)= 1+2x+3x2+....+50x49
∴ At x = 1,
\(\frac{dy}{dx}\)= 1+2+3+....+50
= \(\frac{50(50+1)}{2}\)
= 25 × 51
= 1275.