
Let r and H be the radius and height of inscribed cylinder respectively and θ be the semi - vertical angle of given cone.
If V be the volume of cylinder.
then V = πr2H
∴ V = πr2 ( h - r cot θ)
⇒ V = π( hr2 - r3cot θ)
Differentiating with respect to r, we get

For maxima or minima,
\(\frac{dV}{dr}=0\)

Hence, volume will be maximum when,
\(r = \frac{2h}{3}\,tan\,\theta\)
∴ H (height of cylinder) =
\(h-\frac{2h}{3}\,tan\,\theta.cot\,\theta\)
\(=\frac{3h-2h}{3}\)\(= \frac{h}{3}.\)