Let y = \(sin^{-1}(tan\frac{5\pi}4)\)
Therefore, sin y = \((tan\frac{5\pi}4)=tan(\pi+\frac{\pi}4)\)
\(=tan\frac{\pi}4=1=sin(\frac{\pi}2)\)
We know that the principal value of sin-1 is \([-\frac{\pi}2,\frac{\pi}2]\)
And sin\((\frac{\pi}2)=tan(\frac{5\pi}4)\)
Therefore the principal value of sin-1\((tan\frac{5\pi}4)\) is \(\frac{\pi}2\).