(i) \(\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3};x\neq2,4\)

LCM of the denominator is (x - 2)(x - 4)Now further solve it,
⇒ 3(x– 1)(x – 4) + 3(x – 2)(x – 3) = 10(x – 2)(x – 4)
⇒ 3(x2 - 4x - x + 4) + 3(x2 - 3x - 2x + 6) =10(x2 - 4x - 2x + 8)
⇒ 3(x2 - 5x + 4) + 3(x2 - 6x+6) =10(x2 - 6x + 8)
⇒ 3x2 + 12 – 15x + 3x2 + 18 – 18x = 10x2 – 60x + 80
⇒ 6x2 - 30x + 30 = 10x2 – 60x + 80
⇒ 6x2 - 10x2 - 30x + 60x + 30 - 80 = 0
⇒ - 4x2 + 30x - 50 = 0
⇒ 4x2 – 30x + 50 = 0
⇒ 2x2 – 15x + 25 = 0
Factorize it by splitting the middle term.
⇒ 2x2 – 10x – 5x + 25 = 0
⇒ 2x(x – 5) – 5(x – 5) = 0
⇒ (2x – 5)(x – 5) = 0⇒2x – 5 = 0
\(x=\frac{5}{2}\)
⇒ x – 5 = 0 x = 5
Thus, \(x=5,\frac{5}{2}\)
(ii) \(\frac{1}{x}-\frac{1}{x-2}=3,x\neq0,2\)
LCM of the denominator is x (x - 2)

⇒ x – 2 – x = 3x (x - 2)
⇒ x – 2 – x = 3x2 – 6x
⇒ 3x2 – 6x + 2 = 0
Using \(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
Here a = 3, b = -6, c = 2

(iii) \(x+\frac{1}{x}=3,x\neq0\)
LCM of denominators is x.
\(\Rightarrow \frac{x^2+1}{x}=3\)
⇒ x2 + 1 = 3x
⇒ x2 – 3x + 1 = 0
Using \(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)

(iv) \(\frac{16}{x}-1=\frac{15}{x+1},x\neq0,-1\)

Use cross multiplication to get,
(16 – x)(x + 1) = 15x
⇒ 16x – x2 + 16 – x = 15x
⇒ 16x –15x - x2 + 16 – x = 0
⇒ - x2 + 16 = 0
⇒ x2 = 16
⇒ x = ±4